
Temperature Dependence of the Neutral Ester Hydrolysis of Chloromethyl Dichloroacetate in 2-Butoxyethanol-Water Mixtures in a Wide Temperature Range

Liisa T. Kanerva* and Erkki K. Euranto

Contribution from the Department of Chemistry and Biochemistry, University of Turku, SF-20500 Turku, Finland. Received January 20, 1982. Revised Manuscript Received April 1, 1982

Abstract: Rates of the water-catalyzed hydrolysis of chloromethyl dichloroacetate in 2-butoxyethanol-water mixtures in the temperature range from 2.5 to 45 °C at 2.5 °C intervals were measured conductometrically when the mole fractions of water were 0.988, 0.984, 0.981, 0.980, and 0.975. The Arrhenius plots for the reactions are S shaped when the mole fraction of water is from 0.984 to 0.975. Thus the sign of the heat capacity of activation depends on temperature. At higher temperatures ΔC_p^* is positive, in agreement with the results obtained by Holterman and Engberts¹ for other esters. The positive ΔC_p^* was shown not to be caused by a change in reaction mechanism. At lower temperatures the reaction gives a negative ΔC_p^* , in agreement with other aqueous solutions studied earlier. The estimated ΔC_p^* values at lowest temperatures are exceptionally negative.

Holterman and Engberts¹ recently found a large positive value for $\Delta C_p^* = d\Delta H^*/dT$ in the neutral hydrolysis of *p*-methoxyphenyl dichloroacetate ($\Delta C_p^* = +224$ cal K⁻¹ mol⁻¹) and 2,2-dichloro-propionate ($\Delta C_p^* = +342$ cal K⁻¹ mol⁻¹) in a 2-butoxyethanol-water system at the mole fraction 0.98 of water. This is in dis-agreement with the negative values of ΔC_p^* found for different solvolytic reactions in water and aqueous solvent mixtures.²⁻⁵ For solvolytic reactions in water and aqueous solvent infitures.² For instance, in the neutral hydrolysis of chloromethyl dichloroacetate, the value of ΔC_p^* has been found to be -43.5 ± 2.0 cal K⁻¹ mol⁻¹ in water.⁵ In methanol-water mixtures there seems to be a minimum when the mole fraction of water is 0.95 ($\Delta C_p^* = -58.3 \pm 3.0$ cal K⁻¹ mol⁻¹).⁵ Like methanol, 2-butoxyethanol is a "water structure-making" (TA) solvent.^{6,7} Usually the value of ΔC_p^* decreases when small amounts of such a solvent are added to water.³⁻⁵ Therefore, the value of ΔC_p^* could be expected to be smaller in 2-butoxyethanol-water mixtures, rich in water, than in pure water. The aim of this work was to study the behavior of the neutral hydrolysis of CHCl₂COOCH₂Cl in 2-butoxyethanol-water mixtures when the mole fraction of water is close to 0.98. The reaction is assumed to take place as a generalbase-catalyzed ester hydrolysis, $B_{AC}3$, with a second water

$$ClCH_2OH \longrightarrow CH_2O + H^+ + Cl^-$$
(2)

- (1) Holterman, H. A. J.; Engberts, J. B. F. N. J. Am. Chem. Soc. 1980, 102, 4256-4257.
 - (2) Robertson, R. E. Prog. Phys. Org. Chem. 1967, 4, 213.
- (4) Cleve, N. J. Ph.D. Thesis, University of Turki, 1973.
 (4) Cleve, N. J.; Euranto, E. K.; Kanerva, L. T. "Abstracts of Papers", 4th
- International Symposium on Physical Organic Chemistry, York, 1978; p 251.
 (5) Kanerva, L. T. Licentiate Thesis, University of Turku, 1979.
 (6) Roux, G.; Perron, G.; Desnoyers, J. E. J. Solution Chem. 1978, 7, 639-654
- (7) Blandamer, M. J. Adv. Phys. Org. Chem. 1977, 14, 203.

molecule acting as a general base $:B.^8$ In the case of chloromethyl esters, the mechanism can be written in the form of eq 1 and 2. The possible concurrent rate-determining nucleophilic displacement of chlorine of the chloromethyl group is insignificant in our reaction conditions.3

Experimental Section

The ester was prepared by chlorinating methyl dichloroacetate with gaseous chlorine⁹ and purified by careful fractional distillation using a Todd apparatus, with all disturbing impurities being removed. The solvent mixtures were prepared by diluting a known weight of distilled water with 2-butoxyethanol (Fluka AG, purum), purified by ion exchange and redistillation, to a known volume in a volumetric flask. The initial ester concentrations were about 0.0001 M. The temperature was stable to about 0.01 K.

The reaction was followed conductometrically with a Beckman RC-18 conductometer, with concentrations of the acids being measured. In theory, the degree of reaction is not a precise linear function of conductance. It can be estimated, however, that if the concentration of the acids is such as in our kinetic experiments, the error introduced in rate coefficients is about 0.1% and is even partly compensated by Guggenheim's calculation method. Further, the effect is quite similar at different temperatures and does not affect the calculated activation parameters. Guggenheim's method¹⁰ was used, e.g., because the final value may be in error as adsorption or desorption may cause some drift in longer time periods. Final values were measured in some cases, and the obtained rate coefficients were essentially the same. The standard deviations of the rate coefficients were in general less than 0.05% but may sometimes be about 0.1%. The conductometric method and the accuracy of ΔC_p^* determinations will be described in greater detail elsewhere.¹¹

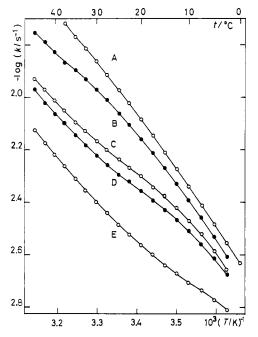
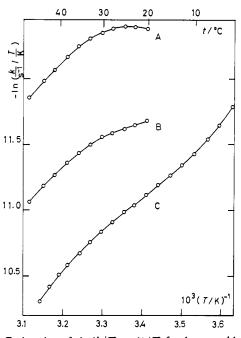
Results and Discussion

The experimental rate coefficients for the neutral ester hydrolysis of CHCl₂COOCH₂Cl in 2-butoxyethanol-water mixtures are given in Table I, and their logarithms are plotted vs. 1/T in Figure 1. The plots are S shaped in four different 2-butoxyethanol-water mixtures (x_w 0.984, 0.981, 0.980, and 0.975). Thus even the sign of ΔC_p^* depends on the reaction temperatures used:

- (10) Guggenheim, E. A. Philos. Mag. 1926, [7] 2, 538-543.
- (11) Kanerva, L. T.; Euranto, E. K.; Cleve, N. J. Acta Chem. Scand., Ser. B, submitted for publication.
- (12) Winter, J. G.; Barron, J. P.; Scott, J. M. W. Can. J. Chem. 1975, 53, 1051-1055
- (13) Cleve, N. J. Acta Chem. Scand. 1972, 26, 1326-1336.
- 0002-7863/82/1504-5419\$01.25/0 © 1982 American Chemical Society

⁽⁸⁾ Euranto, E. K. "The Chemistry of Carboxylic Acids and Esters"; Patai, S., Ed.; Interscience: London, 1969; Chapter 11, pp 529-535, 577-579. Euranto, E. K.; Cleve, N. J. Suom. Kemistil. B 1970, 43, 147-153. Euranto, E. K. Ann. Acad. Sci. Fenn. Ser. A2 1970, No. 152.

⁽⁹⁾ Euranto, E. K.; Noponen, A.; Kujanpää, T. Acta Chem. Scand. 1966, 20, 1273-1280.

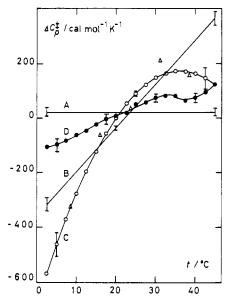

Figure 1. Arrhenius plots of $-\log k$ vs. (1/T) for the neutral hydrolysis of chloromethyl dichloroacetate in 2-butoxyethanol-water. $x_w = 0.988$ (A), 0.984 (B), 0.981 (C), 0.980 (D), and 0.975 (E).

Figure 2. Eyring plots of $-\ln (k/T)$ vs. (1/T) for the neutral hydrolysis of esters in 2-butoxyethanol-water at $x_w = 0.98$. Comparison of the present results (C) with those of Holterman and Engberts¹ (A and B). (A) *p*-Methoxyphenyl 2,2-dichloropropionate ($-\ln (k/t) - 3$); (B) *p*-methoxyphenyl dichloroacetate ($-\ln (k/T) - 2$); (C) chloromethyl dichloroacetate.

at higher temperatures ΔC_p^* is positive, but at lower temperatures negative. Further, it is seen that, in the mole fraction range studied, the smaller the water content of the solution, the wider is the temperature range that gives a positive value for ΔC_p^* . Holterman and Engberts¹ did their experiments in the temperature range from 20 to 48 °C. So our results with a different ester confirm their positive ΔC_p^* (Figure 2) but also show that at lower temperatures the reaction gives a negative ΔC_p^* , which is in agreement with other aqueous solutions studied earlier.

Positive values of $\Delta \overline{C_p}^*$ have earlier been found for the hydrolyses of 4-methoxybenzyl trifluoroacetate¹² and bromomethyl chloroacetate.¹³ In both cases the result was explained by as-

Figure 3. Values of ΔC_p^* at different temperatures for the neutral hydrolysis of chloromethyl dichloroacetate in 2-butoxyethanol-water with $x_w 0.980$, calculated by the method of Clarke and Glew,¹⁴ with three (A), four (B), and five (C) parameters (eq 3), by the method of Blandamer et al.¹⁵ (D), and from ΔH^* values for narrow temperature ranges (triangles, see text). Standard deviations for some points indicated by bars.

suming that the reaction mechanism changes when the temperature is raised, in the former case from $B_{Ac}3$ to $B_{Al}1$, in the latter from $B_{Ac}3$ to a nucleophilic substitution of bromine, S_N2 . Also, Holterman and Engberts¹ considered a change in mechanism as a possible, although improbable, explanation for their results. Indeed, in their case a change in mechanism from $B_{Ac}3$ to $B_{Al}1$ is possible. Because the electronegativities of the alkyl components of their and our esters are very different, it is highly improbable that for both esters the same or some other change in mechanism takes place at the same conditions.

The Arrhenius plots (Figure 1) indicate that ΔH^* and even ΔC_p^* are temperature dependent. Their values can be estimated, e.g., by calculating ΔH^* for short temperature intervals. The results obtained by the method of least squares for $x_w = 0.980$ employing 5-K intervals with three temperatures are indicated in Figure 3. It is better, however, to employ eq 3 as proposed

$$R \ln k = R \ln \frac{kT}{h} - \frac{1}{\theta} \Delta G_{\theta}^{*} + \left(\frac{1}{\theta} - \frac{1}{T}\right) \Delta H_{\theta}^{*} + \left(\frac{\theta}{T} - 1 + \ln \frac{T}{\theta}\right) \Delta C_{p\theta}^{*} + \frac{\theta}{2} \left(\frac{T}{\theta} - \frac{\theta}{T} - 2 \ln \frac{T}{\theta}\right) \left(\frac{d\Delta C_{p}^{*}}{dT}\right)_{\theta} + \frac{\theta^{2}}{12} \left(\frac{T^{2}}{\theta^{2}} - 6\frac{T}{\theta} + 3 + 2\frac{\theta}{T} + 6 \ln \frac{T}{\theta}\right) \left(\frac{d^{2}\Delta C_{p}^{*}}{dT^{2}}\right)_{\theta} + \dots (3)$$

by Clarke and Glew.¹⁴ Calculations up to seven parameters show that the five-parametric equation (3) is flexible enough to correctly represent the data. In general, the first five parameters differ from zero at the 98% level. The values of ΔH^* and ΔC_p^* calculated from the five-parametric equation (3) are presented in Table I and ΔC_p^* values for the three to five parameter equations ($x_w =$ 0.980) in Figure 3. Blandamer et al.¹⁵ proposed that a method, actually based on eq 3 with three parameters, can be used to estimate ΔC_p^* . The method was employed in the present case (Figure 3). It is seen, as stated by Blandamer et al., that the method underestimates the temperature effect on ΔC_p^* . All three methods, however, give similar estimates for ΔC_p^* , which is highly

⁽¹⁴⁾ Clarke, E. C. W.; Glew, D. N. Trans. Faraday Soc. 1966, 62, 539-547.

⁽¹⁵⁾ Blandamer, M. J.; Robertson, R. E.; Scott, J. M. W.; Vrielink, A. J. Am. Chem. Soc. 1980, 102, 2585-2592.

Table I. Kinetic Data for the Neutral Hydrolysis of Chloromethyl Dichloroacetate in 2-Butoxyethanol-Water Mixtures

xw	<i>T</i> , °C	$k_{\rm obsd}, 10^{-3} {\rm s}^{-1}$	∆H [‡] , cal mol ⁻¹	ΔC_p^{\ddagger} , cal mol ⁻¹ K ⁻¹	x _w	<i>T</i> , °C	k _{obsd} , 10 ⁻³ s ⁻¹	ΔH^{\pm} , cal mol ⁻¹	ΔC_p^{\ddagger} , ca mol ⁻¹ K ⁻
0.988	0.07	2.3261 ± 0.0003	9980 ± 150	-33 ± 35		24.95	5.8059 ± 0.0019	4930 ± 40	43 ± 8
	2.60	2.7776 ± 0.0006	9880 ± 80	-41 ± 25		27.66	6.2950 ± 0.0019	5110 ± 50	83 ± 7
	4.99	3.2691 ± 0.0006	9780 ± 40	-47 ± 17		30.12	6.807 ± 0.003	5350 ± 50	112 ± 6
	7.41	3.8537 ± 0.0010	9660 ± 30	-54 ± 10		32.68	7.458 ± 0.002	5670 ± 60	135 ± 7
	10.05	4.5452 ± 0.0014	9510 ± 40	-60 ± 5		35.02	8.005 ± 0.003	6000 ± 50	148 ± 1
	12.53	5.3010 ± 0.0012	9350 ± 40	-66 ± 5		37.74	8.900 ± 0.002	6410 ± 50	156 ± 1
	15.02	6.1362 ± 0.0016	9180 ± 30	-71 ± 6		40.08	9.735 ± 0.012	6780 ± 90	155 ± 2
	17.59	7.1319 ± 0.0014	8990 ± 30	-76 ± 7		42.55	10.680 ± 0.011	7150 ± 160	147 ± 3
	20.00	8.209 ± 0.003	8800 ± 30	-80 ± 7		45.04	11.745 ± 0.009	7500 ± 260	131 ± 4
	22.70	9.492 ± 0.005	8580 ± 30	-84 ± 6					
	24.95	10.667 ± 0.003	8390 ± 40	-87 ± 5	0.980	2.52	2.1091 ± 0.0005	9100 ± 280	-569 ± 5
	27.65	12.152 ± 0.009	8150 ± 40	-90 ± 6		5.04	2.4387 ± 0.0006	7800 ± 170	-462 ± 4
	30.14	13.689 ± 0.006	7920 ± 30	-93 ± 11		7.34	2.7496 ± 0.0007	6840 ± 90	-372 ± 3
	32.67	15.338 ± 0.012	7680 ± 50	-95 ± 18		10.01	3.0875 ± 0.0004	5980 ± 60	-277 ± 2
	35.05	17.041 ± 0.012	7460 ± 90	-96 ± 27		12.47	3.4050 ± 0.0005	5400 ± 60	-197 ± 1
	37.71	19.086 ± 0.015	7200 ± 170	-97 ± 38		15.00	3.7140 ± 0.0006	5000 ± 70	-122 ± 7
						17.50	4.0228 ± 0.0011	4780 ± 70	-57 ± 7
0.984	2.50	2.471 ± 0.003	9650 ± 350	-12 ± 70		20.04	4.3743 ± 0.0005	4710 ± 60	1 ± 9
	5.03	2.937 ± 0.003	9570 ± 200	-54 ± 52		20.04	4.3717 ± 0.0007	4710 ± 60	1 ± 9
	7.50	3.484 ± 0.003	9390 ± 110	-89 ± 37		22.67	4.754 ± 0.002	4780 ± 50	52 ± 1
	7.51	3.467 ± 0.004	9390 ± 110	-89 ± 37		24.97	5.0643 ± 0.0019	4940 ± 50	89 ± 1
	10.05	4.042 ± 0.002	9130 ± 70	-119 ± 24		27.59	5.521 ± 0.003	5220 ± 50	123 ± 9
	12.51	4.673 ± 0.002	8810 ± 80	-140 ± 15		30.10	5.976 ± 0.005	5560 ± 60	147 ± 8
	15.06	5.358 ± 0.003	8430 ± 80	-156 ± 10		32.66	6.544 ± 0.005	5960 ± 70	164 ± 8
	17.45	6.108 ± 0.003	8040 ± 80	-165 ± 10		35.03	7.167 ± 0.004	6360 ± 60	171 ± 1
	20.02	6.924 ± 0.003	7610 ± 60	-168 ± 12		37.71	7.991 ± 0.002	6820 ± 60	171 ± 2
	22.67	7.845 ± 0.003	7170 ± 60	-163 ± 13		37.75	7.974 ± 0.004	6820 ± 60	$\bar{1}7\bar{1} \pm \bar{2}$
	24.91	8.673 ± 0.004	6820 ± 60	-153 ± 13		40.06	8.621 ± 0.008	7210 ± 90	163 ± 2
	27.64	9.769 ± 0.004	6420 ± 70	-135 ± 11		42.54	9.459 ± 0.009	7590 ± 160	147 ± 4
	30.09	10.708 ± 0.004	6120 ± 80	-111 ± 9		45.08	10.69 ± 0.03	7940 ± 270	122 ± 5
	32.63	11.690 ± 0.006	5880 ± 80	-80 ± 11		45.08	10.76 ± 0.02	7940 ± 270	122 ± 5
	35.01	12.705 ± 0.007	5730 ± 80	-44 ± 17				1640 . 040	100 . 5
	37.69		5670 ± 80	3 ± 29	0.975	2.48	1.5408 ± 0.0006	4610 ± 240	-103 ± 5
	37.69	13.634 ± 0.018	5670 ± 80	3 ± 29		4.98	1.6818 ± 0.0006	4420 ± 140	-51 ± 3
	40.04	14.912 ± 0.015	5730 ± 130	50 ± 41		7.43	1.8369 ± 0.0011	4350 ± 80	-6 ± 2
	42.54	16.237 ± 0.015	5930 ± 240	107 ± 57		10.06	1.9593 ± 0.0006	4390 ± 70	37 ± 1
	42.54	16.213 ± 0.009	5930 ± 240	107 ± 57		12.49	2.1283 ± 0.0014	4520 ± 60	70 ± 1
	45.06	17.600 ± 0.009	6270 ± 390	171 ± 75		15.01	2.2888 ± 0.0012	4730 ± 60	97 ± 7
						17.59	2.5007 ± 0.0005	5010 ± 60	120 ± 7
0.981	2.61	2.2101 ± 0.0006	10380 ± 210	-631 ± 44		20.02	2.7256 ± 0.0004	5320 ± 50	134 ± 9
	4.99	2.599 ± 0.002	9000 ± 130	-530 ± 33		22.56	2.9825 ± 0.0006	5680 ± 40	144 ± 1
	7.46	3.002 ± 0.003	7810 ± 70	-433 ± 24		24.98	3.2595 ± 0.0009	6030 ± 40	147 ± 1
	7.55	3.017 ± 0.003	7770 ± 70	-430 ± 23		27.64	3.6141 ± 0.0012	6420 ± 50	143 ± 8
	9.96	3.3640 ± 0.0018	6840 ± 40	-343 ± 15		30.11	3.9553 ± 0.0012	6760 ± 60	134 ± 7
	12.55	3.7731 ± 0.0019	6070 ± 50	-257 ± 9		32.63	4.412 ± 0.003	7080 ± 60	118 ± 8
	15.02	4.1866 ± 0.0018	5530 ± 50	-182 ± 6		35.02	4.8784 ± 0.0018	7340 ± 60	98 ± 1
	15.10	4.204 ± 0.003	5510 ± 50	-180 ± 6		37.73	5.463 ± 0.004	7570 ± 60	67±2
	17.37	4.5277 ± 0.0013	5180 ± 50	-118 ± 6		40.05	6.015 ± 0.004	7690 ± 90	36 ± 3
	20.03	4.9988 ± 0.0011	4950 ± 40	-54 ± 8		42.55	6.669 ± 0.003	7730 ± 170	-4 ± 4
	22.62	5.3823 ± 0.0013	4880 ± 30	1 ± 9		45.09	7.482 ± 0.005	7660 ± 280	-51 ± 5

temperature dependent, $d\Delta C_p^*/dT$ being 19 ± 1 and 16 ± 1 cal mol⁻¹ K⁻² for x_w 0.981 and 0.980, respectively. Evidently this is the highest temperature dependence of ΔC_p^* ever found for solvolytic reactions.

Albery and Robinson¹⁶ proposed a different mechanistic model to explain the deviations from the Arrhenius equation. Blandamer et al.¹⁷ recently applied it to other solvolytic reactions. It cannot, however, be used in the present case because it always gives a negative ΔC_p^* . The temperature dependence of ΔC_p^* will be discussed more precisely elsewhere, employing other esters and other cosolvents in water. At present, we want to warn against drawing too hasty conclusions on the basis of ΔC_p^* values calculated from results obtained when studying a limited temperature range or using different temperature intervals.

⁽¹⁶⁾ Albery, W. J.; Robinson, B. H. Trans. Faraday Soc. 1969, 65, 980-991.

⁽¹⁷⁾ Blandamer, M. J.; Burgess, J.; Duce, P. P.; Robertson, R. E.; Scott, J. W. M. J. Chem. Soc., Chem. Commun. 1981, 13-14. Blandamer, M. J.; Burgess, J.; Duce, P. P., Robertson, R. E.; Scott, J. W. M. J. Chem. Soc., Faraday Trans. 1 1981, 77, 1999-2008.